40 research outputs found

    Testing Equality in Communication Graphs

    Full text link
    Let G=(V,E)G=(V,E) be a connected undirected graph with kk vertices. Suppose that on each vertex of the graph there is a player having an nn-bit string. Each player is allowed to communicate with its neighbors according to an agreed communication protocol, and the players must decide, deterministically, if their inputs are all equal. What is the minimum possible total number of bits transmitted in a protocol solving this problem ? We determine this minimum up to a lower order additive term in many cases (but not for all graphs). In particular, we show that it is kn/2+o(n)kn/2+o(n) for any Hamiltonian kk-vertex graph, and that for any 22-edge connected graph with mm edges containing no two adjacent vertices of degree exceeding 22 it is mn/2+o(n)mn/2+o(n). The proofs combine graph theoretic ideas with tools from additive number theory

    Interactive Coding with Constant Round and Communication Blowup

    Get PDF

    Barriers for Rank Methods in Arithmetic Complexity

    Get PDF
    Arithmetic complexity, the study of the cost of computing polynomials via additions and multiplications, is considered (for many good reasons) simpler to understand than Boolean complexity, namely computing Boolean functions via logical gates. And indeed, we seem to have significantly more lower bound techniques and results in arithmetic complexity than in Boolean complexity. Despite many successes and rapid progress, however, foundational challenges, like proving super-polynomial lower bounds on circuit or formula size for explicit polynomials, or super-linear lower bounds on explicit 3-dimensional tensors, remain elusive. At the same time (and possibly for similar reasons), we have plenty more excuses, in the form of "barrier results" for failing to prove basic lower bounds in Boolean complexity than in arithmetic complexity. Efforts to find barriers to arithmetic lower bound techniques seem harder, and despite some attempts we have no excuses of similar quality for these failures in arithmetic complexity. This paper aims to add to this study. In this paper we address rank methods, which were long recognized as encompassing and abstracting almost all known arithmetic lower bounds to-date, including the most recent impressive successes. Rank methods (under the name of flattenings) are also in wide use in algebraic geometry for proving tensor rank and symmetric tensor rank lower bounds. Our main results are barriers to these methods. In particular, 1. Rank methods cannot prove better than (2^d)*n^(d/2) lower bound on the tensor rank of any d-dimensional tensor of side n. (In particular, they cannot prove super-linear, indeed even >8n tensor rank lower bounds for any 3-dimensional tensors.) 2. Rank methods cannot prove (d+1)n^(d/2) on the Waring rank of any n-variate polynomial of degree d. (In particular, they cannot prove such lower bounds on stronger models, including depth-3 circuits.) The proofs of these bounds use simple linear-algebraic arguments, leveraging connections between the symbolic rank of matrix polynomials and the usual rank of their evaluations. These techniques can perhaps be extended to barriers for other arithmetic models on which progress has halted. To see how these barrier results directly inform the state-of-art in arithmetic complexity we note the following. First, the bounds above nearly match the best explicit bounds we know for these models, hence offer an explanations why the rank methods got stuck there. Second, the bounds above are a far cry (quadratically away) from the true complexity (e.g. of random polynomials) in these models, which if achieved (by any methods), are known to imply super-polynomial formula lower bounds. We also explain the relation of our barrier results to other attempts, and in particular how they significantly differ from the recent attempts to find analogues of "natural proofs" for arithmetic complexity. Finally, we discuss the few arithmetic lower bound approaches which fall outside rank methods, and some natural directions our barriers suggest

    Noisy Radio Network Lower Bounds via Noiseless Beeping Lower Bounds

    Get PDF

    Optimal Short-Circuit Resilient Formulas

    Get PDF
    We consider fault-tolerant boolean formulas in which the output of a faulty gate is short-circuited to one of the gate\u27s inputs. A recent result by Kalai et al. [FOCS 2012] converts any boolean formula into a resilient formula of polynomial size that works correctly if less than a fraction 1/6 of the gates (on every input-to-output path) are faulty. We improve the result of Kalai et al., and show how to efficiently fortify any boolean formula against a fraction 1/5 of short-circuit gates per path, with only a polynomial blowup in size. We additionally show that it is impossible to obtain formulas with higher resilience and sub-exponential growth in size. Towards our results, we consider interactive coding schemes when noiseless feedback is present; these produce resilient boolean formulas via a Karchmer-Wigderson relation. We develop a coding scheme that resists up to a fraction 1/5 of corrupted transmissions in each direction of the interactive channel. We further show that such a level of noise is maximal for coding schemes with sub-exponential blowup in communication. Our coding scheme takes a surprising inspiration from Blockchain technology

    Protecting Single-Hop Radio Networks from Message Drops

    Get PDF
    Single-hop radio networks (SHRN) are a well studied abstraction of communication over a wireless channel. In this model, in every round, each of the n participating parties may decide to broadcast a message to all the others, potentially causing collisions. We consider the SHRN model in the presence of stochastic message drops (i.e., erasures), where in every round, the message received by each party is erased (replaced by ?) with some small constant probability, independently. Our main result is a constant rate coding scheme, allowing one to run protocols designed to work over the (noiseless) SHRN model over the SHRN model with erasures. Our scheme converts any protocol ? of length at most exponential in n over the SHRN model to a protocol ?\u27 that is resilient to constant fraction of erasures and has length linear in the length of ?. We mention that for the special case where the protocol ? is non-adaptive, i.e., the order of communication is fixed in advance, such a scheme was known. Nevertheless, adaptivity is widely used and is known to hugely boost the power of wireless channels, which makes handling the general case of adaptive protocols ? both important and more challenging. Indeed, to the best of our knowledge, our result is the first constant rate scheme that converts adaptive protocols to noise resilient ones in any multi-party model
    corecore